原則一
電感不飽和(感值下降不超出合理范圍)
H加大時,B值也同時增加,但H加大到一定程度后,B值的增加就變得越來越緩慢,直至B值不再變化(u值越來越小,直至為零),這時磁性材料便飽和了。通常電路中使用的電感都不希望電感飽和(特殊應用除外),其工作曲線應在飽和曲線以內(nèi),Hdc稱為直流磁場強度或直流工作點。
對于儲能濾波電感,由于需要承受一定的直流電流(低頻電流相對與高頻開關電流也可視為直流),也就是存在直流工作點Hdc不為零。磁芯需加氣隙才能承受較大的直流磁通,所以該類電感通常選用鐵粉芯做磁芯(有分散氣隙)。
由于磁芯加了分布氣隙,其飽和過程就不是一個突變而是一個漸變的過程,所以電感的不飽和問題就轉(zhuǎn)化為電感感值在直流量下的合理下降問題。
對于PFC、BOOST、BUCK以及DC-DC電感,電感的取值通常由設計要求最大紋波電流(RippleCurrent)來決定(通常設計指標是最大紋波電流百分比)。
原則二:
電感損耗導致的溫升在允許的范圍內(nèi)(考慮使用壽命)
電感主要由磁芯、線圈組成,所以其溫度要求也由這兩方面的限制構(gòu)成。磁芯(Core):儲能電感的磁芯有鐵粉芯、鐵硅鋁粉芯、鐵氧體等構(gòu)成,目前使用最多的是鐵粉芯。鐵粉芯存在高溫老化導致失效的問題,其失效機理可解釋如下:鐵粉芯是由鐵磁性粉粒與絕緣介質(zhì)混合壓制而成,絕緣介質(zhì)通常是高分子聚合物-樹脂類構(gòu)成,其在高溫下絕緣性能會慢慢劣化,鐵磁材料間的電阻會越來越小,從而磁芯的渦流損耗越來越大,大的損耗導致更高的溫升,這樣便形成了正反饋,這稱為熱跑脫效應(ThermalRunaway)。鐵粉芯磁芯的壽命便是由熱跑脫效應決定的,其與溫度、工作頻率和磁通密度都有關系。
原則三: